
38

1

PRACTICES TO SHIELD 
YOUR APIs FROM ATTACK

hello@solsys.ca

solsys.ca

Solsys LinkedIn

mailto:hello@solsys.ca
https://solsys.ca/
https://www.linkedin.com/company/solsys-corporation/
https://www.linkedin.com/company/solsys-corporation/


38

2

TABLE OF CONTENTS 

Int roduct ion: APIs at Risk 

Sect ion 1: 15 Practices to Shield Your APIs

Sect ion 2: OWASP Top 10 Attack Vectors 

Sect ion 3: Getting Started 

3

5

20

31



38

3

APIs at  Risk  
One of our customers, a leader in the 

Canadian Telecom Market, found that the 

need for a single business innovation 

service gateway was inhibiting business 

and imposing unrealistic business costs. 

Their legacy API Gateway was missing 

many features, more over the code was 

outdated with no way to observe or 

measure traffic. This platform was 

performing the vital role of securing access 

to many business-critical APIs.

With planned significant increases in API 

usage on the horizon, driven by new 

business services to be offered by Media, 

Health, IoT, and 5G, Solsys was engaged to 

work with them to establish a 

next-generation API connectivity platform. 

With an eye towards quality and security, 

an essential part of this engagement has 

been to modernize security to address the 

API attack vector risk while retiring the 

legacy system.

APIs as an At t ack  Vect or

Our client is right to be concerned about 

API attack vectors. They are large and 

increasing security concerns for 

corporations, at the same time that API 

usage is increasing and becoming critical to 

strategic business operations and for 

enabling innovation with partners and 

cloud services. According to Forbes and as 

predicted by Gartner, 2022 saw a large spike in 

API security threats. The API attack vector is still 

a high-risk issue in corporations, and 2023 

kicked off with T-Mobile revealing the theft of 

the personal data of 37 million of their 

customers from an exposed API endpoint in the 

last few months.

Our  Secur it y Journey & Lessons 
Learned  

In our multi-year journey with our client, we 

have significantly improved their security 

posture, provided full observability and security 

audit events, retired their legacy high-risk API 

platform, and delivered many API management 

capabilit ies to enable innovation and faster 

time-to-market.

In this ebook, we will share the practices of our 

product development teams in building and 

securing APIs and implementing a defense 

strategy with this customer to protect and 

enable the use of their API assets. We will 

discuss the practices (activities, approaches, 

tools, platforms, systems, ideas, architecture, 



38

4

and designs) that have enabled our 

development teams to securely develop this 

secure API platform product with our 

Canadian client and how we continue to 

ensure that this software remains secure. 

While the tit le of this ebook relates to API 

security and this journey, the practices 

discussed in this series apply to all software 

development.

Later in the ebook, we will discuss specific 

security risks and how these working 

practices are applied to help avoid them. We 

will be reviewing the OWASP top 10 security 

risks, and explaining how the practices we 

have outlined help to avoid these problems.



38

5

Practices 1-4: Approaches & Activities

Practices 5-9: Approaches & Activities

Practices 10-15: Approaches & Activities 

SECTION 1: 
15 Practices to Shield Your APIs from Attack

Pract ices 1-4: Approaches & Activities

Pract ices 5-9: Ideas, Architecture, and Design

Pract ices 10-15: Tools and Systems



38

6

Approaches & Act ivit ies 

01: DevSecOps Product  Team s

Use DevSecOps Product Teams enabled with 
ownership of security & operations, agency to 
prioritize security, and security related tooling.

02: Aut om at ed Secur it y Test ing 

Full automated testing of security posture using 
programmatic tests, work prioritized and 
automated by the DevSecOps team.

03: Ext ernal Secur it y Services 

Externally provided penetration testing and 
security reviews are vital inputs to the product 
team.

04: Secur it y Consult ing as a 
Service 

Ensure teams have access to security expertise 
and guideance when they need it. 

These approaches and activities are extremely valuable to improving security during software 

development and largely revolve around DevSecOps Teams, Automated Tests and Threat 

Analysis. 



38

7

01 DevSec Ops Product  Team s 

Dedicated DevSecOps development teams 

are a key approach to ensure a reduction in 

security exposures. Dedicated product 

teams that own a product 's code base, can 

iterate independently and are aware of 

security as an ongoing requirement can be 

very effective at reducing security risks. 

Enabling these teams with tooling and 

training is important, but also allowing their 

Product Owner to work with the team to 

prioritise security requirements and repairs, 

is also critical.

Enabled DevSecOps teams tend to work as a 

group to look at the big picture with a 

product. Owning deployment and 

configuration (CI/CD) pipelines ensures they 

have an eye for pushing products and 

configurations consistently and reliably.

Stable DevSecOps teams require business 

sponsorship to ensure consistent dedicated 

team members over time. From a business 

perspective, stable and consistent teams 

owning a product pay off. Not only can these 

teams build a sense of pride and ownership 

around their work, but the ability to 

maintain and adapt these products to new 

business needs becomes rapid and costs 

less overall than bringing in people every 

time changes are required. Our client 

measured in one example year that they 

saved $100K in terms of administrative 

overhead alone, by simply being able to ask 

for particular changes to the product from 

an existing team and not having to go 

through the expenses of engaging new 

Teams concerned with product security and 

quality as a whole tend to prioritize 

automated testing. Our two teams working 

on this particular system have over ten 

thousand (and growing) fully automated 

programmatic functional tests for the 

platform. Programmatic just means that the 

tests (even for user interfaces) are 

orchestrated by functions in the code. This 

means that if part of the interface changes, 

the functions dealing with that part of the 

interface are quickly changed, and the 

orchestrated test continues to pass. It is 

worth knowing that the DevSecOps team as 

a group owns the development and 

maintenance of all these tests so that tests 

02 Aut om at ed Secur it y Test ing

people every time. This saving does not even 

measure the business case offered by having 

this product team able to rapidly respond to 

these new business needs and implement a 

solution sustainably, ensuring the solution is 

secure, tested, and fits well within the 

product codebase.

 



38

8

Product teams benefit from feedback. As 

such, we also ensure that external code 

evaluation and penetration testing by a 

third-party group is engaged from time to 

time. This type of testing gives the team 

insight into potential improvements or risk 

areas and may find existing gaps in the 

system. 

These activities can be performed without 

much engagement from the product team 

until it is time to review the results and decide 

how to prioritize identified improvements. 

This is a great ?service? for established 

partners or security departments to offer to 

product teams in their organization. 

External tooling can help the team a lot. In a 

future post, we?ll discuss how some of these 

tools work within automation pipelines to 

measure and check for security issues. 

However, running external scanning tools 

periodically as a ?state-of-the-nation? 

assessment update is also valuable. An 

example of external tooling our DevSecOps 

team has used is an SSL checking tool, like 

the SSL Labs from Qualys.

Empowering our DevSecOps team to own the 

product and prioritize security and quality 

work has enabled us to act on the input from 

security reviews quickly, depending on risk 

and priority. Agility and automation are what 

enable our teams to roll out fixes to any 

identified gaps at low cost and close any 

high-risk findings in production rapidly and 

with confidence.

 

are applied at the time of the development 

or change in a feature. In fact, our team with 

this client spent several years doing this 

testing without any specialized or dedicated 

QA Developer on the team at all. 

Several thousand of these automated are 

exclusively concerned with validating 

security policy and 'edge case' conditions 

that could result in a security failure or 

exploit. This is over and above countless unit 

tests in the code. These tests are 

programmatic, meaning the development 

team maintains the functions and steps that 

enable them every sprint as they are 

building functions and features. Tests have 

to pass completely to have a candidate build 

to deploy to any other system, and the tests 

are baked into the CI/CD pipeline. Agile 

teams might need to change any part of 

their code base regularly, and Test Driven 

Development (TDD), and good functional 

test coverage help teams design code for 

change. 

03 Ext ernal Penet rat ion  & 
Secur it y Test ing

https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/


38

9

elsewhere in the organization. 

In our case, using security expertise from a 

trusted professional within the customer?s 

organization enabled us to meet these goals. 

We were lucky to find that our specific 

customer experts are approachable and 

supportive in providing direction and advice. 

So often in large organizations employees 

tend to avoid security groups for fear of them 

shutting down work until they can ?fully 

review? the design, audit the implemented 

code, or other ?work stopping? blockers. In 

these cases, security is sometimes seen as an 

obstacle to avoid, rather than a consultation 

that will help.

It takes awareness and trust to work with 

Agile teams who are dealing with constant 

change and support them as they try to 

improve. A security department with a service 

mindset will be more readily engaged by 

those teams, will have much greater 

influence over those teams, and therefore 

greater success at improving an 

organization's security.

 

04 Security Consulting as a

Service

It is unlikely that every team has the 

expertise for all types of security 

questions. While a cross-functional 

DevOps team should include the required 

day-to-day security skills whenever 

possible, there will always be situations 

where additional expertise and advice is 

needed, and sometimes that means 

more than finding online articles.

Our team benefits greatly from 

approachable security professionals in 

other parts of our customer?s 

organization. Sometimes this was 

because we needed to know what 

systems or software may already exist to 

meet a need, or if we were building some 

secure component, that the approach we 

were taking made sense and was 

addressing the correct things. Sometimes 

we need to know if specific security 

policies exist around a particular type of 

software implementation, and being able 

to reach out to other experts can help.

A prior example in our case was when we 

needed to implement SSL certificate 

signing and verification services. Some of 

this function was supported in the 

products we were already using, but 

parts of it were not. When considering 

something like a certificate signing 

service, we wanted additional support to 

ensure we were complying with our 

customer?s organizational standards and 

concerns, and that we weren?t building 

something that we could leverage from 



38

10

Ideas, Architecture, & Design 

Practices 5-9: Concepts, Cryptography, & 
Credentials

05: Net work  & Credent ial 
Encrypt ion

Use best practices behind network set up, and 
data encryption & protection, especially with 
regards to credentials.

06: Rot at e, Repave, Repair  

This concept is common in security thinking and 
is enabled through pipeline automation (CI/CD 
pipelines). 

07: Policy Set s 

This architectural idea is related to API 
deployment and a mechanism to ensure 
accepted security exposure patterns are encoded 
into API deployment choices to prevent  security 
deployment errors. 

08: Ident it y & OAut h2 Policies

This API specific architecture implements policies 
that work with the identity platform to enforce 
identity validation at the request level, and 
ensures APIs are defended at the Resource 
Gateway.

09: eXt rem e Program m ing Concept s 

Some of the eXtreme programming ideas can help teams to improve code security by spotting errors 
faster, reducing complexity, and focusing on 'fit for purpose' design hygiene.

These ideas, architectures, and design are extremely valuable to improving security during 

software development, especially around API exposure. These concepts are either specific 

architectural ideas related to APIs, or ?best practice? approaches or ideas related to networks, 

infrastructure, or software programming in general.



38

11

05 Net work  and Credent ial 
Encrypt ion Pract ices 

Simple network security approaches are key. 

Always insist on the basics like using HTTPS 

everywhere, and locking down ports by 

default (deny-by-default, only open ports as 

needed, and ideally only open endpoints 

within private subnets). We also focus on 

common credential 'hygiene', such as storing 

credentials in an encrypted format, and 

providing interfaces so customers can 

self-serve changes to their API access keys 

and credentials. It is paramount to avoid 

transmitting API secrets to API customers 

over insecure channels such as email. This 

practice also keeps us on the right side in a 

'non-repudiation' situation, whereby only 

clients have knowledge of their credentials 

and are responsible for their security. This 

restricted access does, of course, require an 

interface where a specific customer is 

authorized to manage a particular 

application profile, but others are not. 

Whether a security setting is changed via an 

API or the management portal, we track ALL 

security events in detail, including who 

changed what, when, and from where. These 

details enable future investigations into 

activities like credential change or 

management. We?ll cover more in a future 

post about Observability & SIEM. 

All these concepts are kept in a simple 

checklist, maintained by the team, to review 

when they decide to make architectural or 

software changes. Other security 

agreements and team practices are captured 

Another practice captured and encoded into 

our build and deployment pipelines, are the 

concepts of Rotate, Repave, and Repair (the 

Three R?s of security). Wherever possible and 

practical, the product team ensures that 

their pipeline pulls the latest versions of 

containers or libraries into the product build 

process. Even if a firmware, library, or 

platform is a manual step and decision, the 

pipeline and fully automated tests enable 

the team to validate the new change (e.g. a 

library replacement), with confidence that no 

defects have been introduced with the 

update. Staying current on the latest 

versions of dependencies helps to close 

security gaps because older code tends to 

be more exploitable (not just entropy at 

work, but also attackers have had more time 

with the older code to discover and exploit 

gaps that were there all along).

06 Rot at e, Repave, Repair  - 
Aut om at ion & APIs 

in other checklists and are a working 

agreement between the members of the 

DevSecOps team.



38

12

A popular infrastructure vendor announced 

a critical security flaw in their system. Our 

team was able to redeploy that 

infrastructure on the latest (fixed) version 

quickly and validate its functionality, prior to 

swapping out the component at risk. This 

swift response was only possible because we 

automated our deployment, set-up, and 

testing. The result? Speed, security, 

reliability, and no impact on customers - 

hallmarks of our team as a result of these 

practices.

07 Policy Set s: Secur it y Pat t erns 
Pre-Encoded

Our API gateway introduced a specific 

deployment pattern for APIs in production 

that our team invented. Called 'policy sets', 

we have designed the workflow for the 

day-to-day operations team responsible for 

deploying customers' services on the 

gateway so that they select from security 

patterns pre-encoded in sets of policies. 

Using policy sets means that it is practically 

impossible for someone on this team, 

regardless of skill level or experience, to 

configure and deploy an API without at least 

basic levels of authentication and security 

logging. Other policies can be selected from 

the set or are required to be configured in 

the set, depending on the pattern the policy 

set represents.

 

08 Ident it y, OAut h2 and t he 
Resource Server

One of these policies and policy sets is 

responsible for enforcing OAuth2 security. 

Solsys had previously worked with our 

Canadian customer around Identity and 

Access Management (IAM) to establish an 

Identity Platform (IdP), which hosts their 

customer 's identity and can issue OAuth2 

tokens expressing the customer?s authorized 

relationship to their products and services. 

The API gateway provides OAuth2 as a 

service to downstream APIs (without API 

developers having to validate customer 

tokens in their physical API) and also works 

with the IdP to enable this policy, when 

needed, to play the full role of the Resource 

Server in the OAuth2 model. As a result, our 

gateway can be configured, on an API and 

method-by-method basis, to enforce 

account or product validation for a specific 

customer. 

What this means is that any client accessing 

an important API protected this way has to 

provide an OAuth2 token, generated by 

customer authorization, that the gateway 



38

13

validates to ensure that the client is only 

accessing accounts or products for which 

the customer has authorized access. For 

example, accessing an account balance 

by billing account number can require 

the token to represent a customer who 

has that billing account associated with 

their identity profile.

This extra level of checking on the 

gateway protects the APIs from 

accidental mistaken access, but also 

malicious use of software clients' 

credentials should their API key become 

compromised. 

Kong, as an API gateway and critical 

partner, provides the framework for fully 

orchestratable and customizable policies. 

We were able to use this capability to 

adapt OAuth2 policies to perform the 

specific validations required and overlay 

our policy set concept.

09 eXt rem e Program m ing 
Concept s

Lastly, concepts from the eXtreme 

Programming (XP) movement play a 

prominent role in software security in 

general.

If you?re not familiar with XP, many of 

these ideas pre-date Scrum and the 

Agile Manifesto. Most of the concepts in 

XP are programming practices and 

concepts, whereas in general terms 

Agile concepts can apply to all kinds of 

complex work. Going into depth here is 

out of the scope of this series, and our 

teams like most, follow XP practices to 

varying degrees. Some ideas in XP 

however can really help to ensure 

software security.

For example, Pair Programming, the 

idea of two developers working 

together to produce code, can help a 

team ensure that common 

development mistakes are caught 



38

14

immediately. It also helps teams to be 

confident that everyone?s code is 

adhering to agreed working practices - 

including those related to security. Pair 

Programming tends to be more 

comprehensive and likely to catch issues 

than post-development code reviews 

(although these aren?t mutually exclusive 

practices).

The benefits of simplicity in code, 

another XP idea - and its impacts on 

security - cannot be overstated. Building 

the least amount of code to meet the 

need is a great way to avoid building 

software that contains security 

vulnerabilit ies. Code that isn?t there, can?t 

have a security defect! Our team 

operationalized this principle during joint 

design sessions, Pairing, and code 

reviews. Complexity in code is where we 

often find unintended behaviours and 

security holes. Removing unused code, 

continuous refactoring (boy scout rule as 

it?s sometimes called), and team-agreed 

coding standards all help towards this 

goal. Our teams also agree to measure 

some of these coding standards through 

code analysis tools.

The concept of simplicity in code can also 

be reflected in general design hygiene. 

The idea of keeping designs minimal 

(simple), but also considering whether a 

function should even be there or not, is 

important. For example, having 

considered RESTful design for any 

implemented APIs means that the team 

is more likely to implement an API 

correctly. There will be fewer 'strange gaps' in 

terms of how the API works, operations aren?t 

just left in because they might be needed, 

rather they are built only with intention. 

Following good design principles also means 

that your software will make appropriate use of 

the functions and patterns in an API 

implementation library instead of working 

against them. When we use the tools we select 

for their intended purpose, we?re more likely to 

benefit from their functionality (that might 

protect us from security problems), rather than 

introduce unexpected behaviours (which can 

lead to new security problems).

https://www.oreilly.com/library/view/97-things-every/9780596809515/ch08.html
https://www.oreilly.com/library/view/97-things-every/9780596809515/ch08.html
https://www.oreilly.com/library/view/97-things-every/9780596809515/ch08.html


38

15

Tools & Systems 

Practices 10-15: Tools & Tech

10: Code Scanning & Analysis 
Tools 

These tools help detect software security issues 
as part of an automated CI/CD pipeline. 
DevSecOps teams can set build breaking 
gateways around issues as needed to detect 
issues early in development.

11-13: Technologies for  
Enabling t he Three R's 

These sections cover Cloud Platforms, 
Automation Tooling, and APIs - technologies 
important in implementing the Rotate, Repave, 
and Repair practice more easily.

14: Monit or ing 

Automated monitoring (synthetic transactions) 
can check and validate security edge cases, while 
providing continuous output to monitor platform 
behaviour as it related to security.

15: Observabil i t y & SEIM

The practices of making products monitorable -  
observability and security event logging - can 
greatly assist in making a product more secure, 
especially when integrated into a SEIM.

These tools and technologies (platforms, and systems) are extremely valuable to improving 

security during software development. These practices cover specific types of tooling and 

platforms that can be introduced by the team or provided by the organization to support teams 

developing software products.



38

16

DevSecOps product team orchestrates these 

tools as well as evaluates the information they 

provide. While it can be useful to provide 

advice and training to the team about their 

tools, the ultimate decision about the impacts 

of the analysis metrics, and any resulting code 

changes, is made by the team since they are 

the experts closest to the current 

implementation. 

Invoking these tools is usually included as a 

step in the build (DevOps/CI/CD) pipeline to 

ensure that reports and measurements are 

kept up to date. The team can even agree to fail 

a build if certain thresholds in these metrics are 

exceeded, which helps the team ensure they?re 

sticking to their working agreements. This level 

of automation is something our teams do in 

the pipeline to ensure security.

10 Code Scanning & Analysis 
Tools 

Security tooling is extremely valuable for 

DevSecOps product teams in providing 

information to enable them to make 

decisions about their implementations.

 We use services to scan our 3rd-party 

libraries and report on things like CVEs that 

are applicable. There are several types of 

these tools on the market, and the selection 

of them would be dependent on language, 

cost, and licensing choices. 

Another type of code scanning tool, an 

example of which is SonarCube, can perform 

static analysis on code to identify security 

exceptions or bad practices. Such tools 

provide metrics for unit test coverage, code 

complexity and instances of poor security 

practices.

As the security owner for their solution, the 

Example dashboard from SonarQube showing a scan of a code base with a possible security vulnerability, 

along with other metrics

https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures
https://www.sonarsource.com/products/sonarqube/


38

17

12 Enabling The Three R?s - 
Automation

Our DevSecOps teams use CI/CD pipelines 

that automatically perform these activities as 

part of the deployment, grabbing the latest 

libraries and containers for deployment 

purposes, and ensuring stateless API services 

that enable a 'red green' style of 

infrastructure change-over, all with litt le to no 

developer intervention at deployment time.

In addition to this, our team ensures that 

credentials and SSL certificates (either 

internal or for clients) are regularly rotated. 

Tools like Jenkins and it?s associated plugins 

are usually leveraged here as an orchestrator 

to this pipeline. There are also many other 

scripting, code, and deployment 

orchestration languages being called to 

achieve full automation, however. These can 

include tools like Chef, Salt, Ansible, 

Terraform, and Puppet. All of these languages 

excel at orchestrating software deployment, 

calling cloud APIs, and configuring systems.

11 Enabling The Three R's - Cloud 
Platforms

The three R's of security - Rotate, 

Repave, and Repair - are key to the 

DevSecOps product team. The ability to 

execute these ideas, however, is often 

dependent on tooling. A massive 

benefit of cloud-based infrastructure, 

such as AWS or GCP, is that APIs exist to 

perform these kinds of activities more 

easily. Cloud Platforms are designed to 

be easy to orchestrate, configure, and 

reconfigure. They also provide 

repositories of updated containers and 

operating system images since cloud 

platforms are always virtualized 

infrastructure.

https://redpanda.com/blog/ansible-terraform-chef-salt-puppet-cloud
https://redpanda.com/blog/ansible-terraform-chef-salt-puppet-cloud
https://redpanda.com/blog/ansible-terraform-chef-salt-puppet-cloud
https://redpanda.com/blog/ansible-terraform-chef-salt-puppet-cloud
https://redpanda.com/blog/ansible-terraform-chef-salt-puppet-cloud
https://redpanda.com/blog/ansible-terraform-chef-salt-puppet-cloud


38

18

13 Enabling The Three R's - APIs

Our API management platform provides 

services to enable clients to rotate and 

manage credentials themselves and 

encourages good security behaviour 

and practice by making it easy to invoke 

operations via software. If the tools (in 

this case APIs) are not available to 

automate tasks like credential rotation, 

teams are not likely to find the time to 

manually invoke the processes 

required. APIs enabled us to write 

software to ?set it and forget it?, which 

ensures credential security over time.

14 Monitoring

Automated monitoring tools that 

deliver synthetic transactions provide 

another means of ensuring security. By 

validating connectivity, behaviour, and 

response times regularly, the 

DevSecOps team is immediately alerted 

to possible security compromises 

triggered by errors in the synthetic 

transaction. We'll talk more about the 

kinds of security vectors these 

measures help identify and protect 

against later in the post on specific 

attack vectors identified by OWASP?s top 

10.

https://docs.google.com/document/d/1DrSwVOdgdmnZ_5DvWhGoaRkyhHdtWwC6bqZyxq8SCxY/edit#heading=h.w5t4gfo07lv8
https://docs.google.com/document/d/1DrSwVOdgdmnZ_5DvWhGoaRkyhHdtWwC6bqZyxq8SCxY/edit#heading=h.w5t4gfo07lv8
https://docs.google.com/document/d/1DrSwVOdgdmnZ_5DvWhGoaRkyhHdtWwC6bqZyxq8SCxY/edit#heading=h.w5t4gfo07lv8
https://docs.google.com/document/d/1DrSwVOdgdmnZ_5DvWhGoaRkyhHdtWwC6bqZyxq8SCxY/edit#heading=h.w5t4gfo07lv8
https://docs.google.com/document/d/1DrSwVOdgdmnZ_5DvWhGoaRkyhHdtWwC6bqZyxq8SCxY/edit#heading=h.w5t4gfo07lv8
https://docs.google.com/document/d/1DrSwVOdgdmnZ_5DvWhGoaRkyhHdtWwC6bqZyxq8SCxY/edit#heading=h.w5t4gfo07lv8
https://docs.google.com/document/d/1DrSwVOdgdmnZ_5DvWhGoaRkyhHdtWwC6bqZyxq8SCxY/edit#heading=h.w5t4gfo07lv8
https://docs.google.com/document/d/1DrSwVOdgdmnZ_5DvWhGoaRkyhHdtWwC6bqZyxq8SCxY/edit#heading=h.w5t4gfo07lv8


38

19

security by providing automated use 

case monitoring of possible attacks. 

Leveraging machine learning can help 

to spot aberrant patterns in client 

behaviour, and highlight possible 

attacks. Such a platform can check for 

malicious actors and activity, and alert 

the team of a possible security gap. This 

is a great example of a security service 

that can be deployed by enterprise 

security to service DevSecOps teams 

like ours. The product we?ve built 

already includes well-instrumented and 

defined access and audit events that 

track all the information needed to 

trigger security events, and exemplifies 

how the product development team can 

collaborate with the corporate security 

team to identify attacks and breaches. 

In the case of the T-Mobile exposure 

that happened over several weeks, this 

type of observability and a SIEM 

platform could have helped them 

identify the issue sooner.

Observability and SIEM (Security Event & 

Incident Management) tools play an 

enormous role in ensuring security. Security 

breaches happen in the dark when no one is 

watching, so the best way to improve a 

system?s security posture is to ensure it is 

well-observed (see our eBook Convergence 

Security & Observability for more 

information!). We make it a core principle for 

our team to know what?s happening in our 

product so we can support it. Being a 

DevSecOps team means that the people 

building the product also operate and 

support it - and no one wants to be sitting in 

the dark when something goes wrong.

Our DevSecOps team iteratively improves 

logging and observability information 

produced by the product over time. Enabling 

a team to make decisions about what kinds 

of transactions are relevant to report on to 

improve operations and security, means the 

experts on the product are always improving 

their capability to observe more and increase 

visibility for possible attack vectors. 

Observability platforms can be set up to 

monitor and alert on specific types of events 

that could indicate a security problem. For us, 

Splunk provides the observability platform, 

and our product puts millions of events and 

tracking records into Splunk daily, to give full 

insight into the API platform product for our 

DevSecOps team as well as for external 

operations and security groups.

A DevSecOps team can?t do everything 

themselves, however. The ability to channel 

logs into a SIEM platform further enhances 

15 Observability & SIEM

Splunk is used with our client as a platform that can 

provide reporting directly from audit and security logs 

over 13 months of millions of data events

https://venturebeat.com/security/t-mobile-data-breach-shows-api-security-cant-be-ignored/
https://venturebeat.com/security/t-mobile-data-breach-shows-api-security-cant-be-ignored/
https://solsys.ca/convergence-of-observability-and-security-ebook/
https://solsys.ca/convergence-of-observability-and-security-ebook/
https://solsys.ca/convergence-of-observability-and-security-ebook/
https://solsys.ca/convergence-of-observability-and-security-ebook/
https://docs.google.com/document/d/1DrSwVOdgdmnZ_5DvWhGoaRkyhHdtWwC6bqZyxq8SCxY/edit#heading=h.vmd4oqc75vtt
https://docs.google.com/document/d/1DrSwVOdgdmnZ_5DvWhGoaRkyhHdtWwC6bqZyxq8SCxY/edit#heading=h.vmd4oqc75vtt
https://www.splunk.com/


38

20

SECTION 2: 
OWASP TOP 10 ATTACK VECTORS 

01 Broken Access Control 

02 Cryptographic Failures

03 Injection

04 Insecure Design

05 Security Misconfiguration

06 Vulnerable and Outdated 
Components  

 07 Identification and 
Authentication Failures

08 Software and Data Integrity 
Failures 

09 Security Logging and Monitoring 
Failures 

10 Server-Side Request 



38

21

The concept of policy sets in our API gateway 

means that we prevent accidental deployment 

of API endpoints that miss the access control 

policies. None of the API deployment operators 

can ever configure an endpoint with missing 

authentication and access control, as a result of 

this design. It also means that, implicitly, access 

control mechanisms are being reused across 

the system.

01 Broken Access Control 

Automated Security Testing 

Having the policies involved in access control 

continually tested prevents accidental 

failures and new bugs from being 

introduced. These tests cover failure 

scenarios as well, and having the team adopt 

this testing mindset (?how can I break this 

code??) is important in ensuring these tests 

have coverage. Part of our testing involves 

automated validation after deployment to all 

environments, including production, which 

allows the team to ensure access control 

policies are behaving as expected. We also 

test for valid encryption of identity tokens 

being used by the system, and tests involve 

providing fake and manipulated tokens to 

ensure the system does not accept them - a 

risk directly identified by this OWASP vector.

Every few years, the Open Worldwide Application Security Project (OWASP) updates its top attack vectors. To 

illustrate how our work and the practices we?ve discussed in this ebook truly help improve security posture, 

this post goes through the first of the top 10 attack vectors and reviews which of the practices helps to 

prevent this kind of attack.

Broken access control involves clients obtaining information or operations that they are not permissioned to 

access. In APIs, access control can be complicated and hard to validate. Of the practices we have talked 

about, our teams rely on the following to prevent this kind of security risk.

Network and Credential Encryption 
Practices 

OWASP calls for deny-by-default as a 

practice for ensuring no access to 

unnecessary resources. Our network 

practice of closing ports by default is a good 

example of this one.

Policy Sets

Identity, OAuth2, and the Resource 
Server
Compromised software credentials for one of 

your clients is almost inevitable. In this 

scenario, a simple B2B API is automatically 

vulnerable, granting access to all the 

operations permissioned for the client, which 

might mean the ability to access hundreds or 

thousands of customer accounts and their 

related information. Our OAuth2 policy in the 

gateway can protect against this type of breach. 

Having the customer who owns the data in the 

API call flow, as identified by an Identity 

Platform generated authorization token, 

provides an extra layer of security that makes it 

virtually impossible for an attacker to 

brute-force an API to download thousands of 

https://owasp.org/
https://owasp.org/Top10/
https://owasp.org/Top10/
https://owasp.org/Top10/
https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://owasp.org/Top10/A01_2021-Broken_Access_Control/


38

22

results without also tricking every single 

customer into authenticating and authorizing 

their calls at the same time, which is far more 

difficult, unlikely, and impractical. Does losing 

thousands of customer records to an attacker 

sound like a familiar issue? It should be, it 

happens to corporations all of the time. Such 

an ?OAuth as a service? policy might have 

protected the compromised T-Mobile API, 

depending on the particular attack used. This 

kind of policy helps our client stay off the front 

page of the news with this kind of damaging 

announcement by ensuring access control is 

specific, not just to the API user, but also to the 

customer information being accessed.

https://venturebeat.com/security/t-mobile-data-breach-shows-api-security-cant-be-ignored/
https://venturebeat.com/security/t-mobile-data-breach-shows-api-security-cant-be-ignored/


38

23

This practice, combined with Automated 

Security Testing (in fact, automated testing as a 

whole) means that upgrades to newer versions 

of a platform or a library that support new 

encryption protocols can be done confidently 

without introducing regression errors. The 

A06:2021-Vulnerable and Outdated 

Components security risk talks more about 

these kinds of risks and how this process helps 

us address them.

02 Cryptographic Failures

Network and Credential Encryption 
Practices 
Lack of cryptography certainly counts as a 

cryptographic failure. Our practice of ?SSL 

everywhere? and practicing good credential 

encryption hygiene avoids these issues.

Encryption everywhere (SSL on the network, 

encryption at rest, etc.), as a default practice, 

prevents data from being transmitted in the 

clear. Our Automated Security Testing also 

validates some of these configurations, 

ensuring HTTP connections are being 

appropriately redirected or rejected, for 

example.

Rotate, Repave, Repair - Automation 
& APIs

Cryptographic Failures occur when data is transmitted in the clear, or with old or weak encryption algorithms 

that enables information to be compromised by a third-party. Of the practices we have covered, our teams 

rely on the following to prevent this kind of security risk.

External Pen-Testing & Security 
Review

Having external teams and tools validate 

and check for outdated SSL algorithms, for 

example, helps the team to identify where 

the product may have weaknesses. 

Interestingly, just because your product 

might have to support older SSL encryption 

protocols for legacy clients, it does not 

preclude your platform from prioritizing and 

negotiating for the updated protocols by 

default, thus protecting customers who can 

support newer and more secure protocols.

https://owasp.org/Top10/A02_2021-Cryptographic_Failures/
https://owasp.org/Top10/A02_2021-Cryptographic_Failures/


38

24

OWASP requires access control failures to be 

logged. Our fully-instrumented observability 

and security events do exactly that. We push 

them to the Splunk platform for continued 

monitoring and auditing. Having a SIEM 

platform that can trigger and watch for unusual 

activity, perhaps even employing machine 

learning to detect these aberrant patterns, 

would further enhance the detection of access 

control failures. 

03 Injection 

External Pen-Testing & Security 
Review
Good pen-testing services will attempt to 

exploit injection techniques specifically. One 

of the early reviews of our system found that 

we were allowing XML style-sheets in a 

request to reference an off-site URL, which 

could perhaps expose us to injection or 

tracking risks. The configuration option to 

disable off-site requests was missed by the 

team. Rather than simply fix the issue in the 

code and move on, the team encoded the 

check for the issue into an Automated 

Security Test to ensure the proper 

behaviour, forever. They also did some 

research to see if there were similar patterns 

in other parts of the system. Having the 

DevSecOps Product Team and their Product 

Owner empowered to prioritise this work 

means similar issues have never been 

detected by future pen tests.

Observability & SIEM

Injection attacks involve an attacker tricking your software into executing instructions, supplied 

through additional or specially formatted parameters. 

It?s hard to protect against these attacks without following basic development practices and 

using well-built and supporting software libraries. Checking for and even discovering such 

attacks can also be difficult. Of the practices we have talked about, our teams rely on the 

following ones to prevent this kind of security risk.

Code Scanning & Analysis Tools

Injection often takes advantage of unparsed 

or unhandled customer-provided strings. 

Code analysis tools can check for these 

mistakes. Additionally, eXtreme Programming 

Concepts like Pair Programming make them 

less likely to occur in the first place (the old 

adage of ?two heads are better than one? 

definitely applies to complex and creative 

practices like software development). 

https://docs.google.com/document/d/1DrSwVOdgdmnZ_5DvWhGoaRkyhHdtWwC6bqZyxq8SCxY/edit#heading=h.gooe3u33fmy7
https://docs.google.com/document/d/1DrSwVOdgdmnZ_5DvWhGoaRkyhHdtWwC6bqZyxq8SCxY/edit#heading=h.gooe3u33fmy7
https://docs.google.com/document/d/1DrSwVOdgdmnZ_5DvWhGoaRkyhHdtWwC6bqZyxq8SCxY/edit#heading=h.gooe3u33fmy7
https://docs.google.com/document/d/1DrSwVOdgdmnZ_5DvWhGoaRkyhHdtWwC6bqZyxq8SCxY/edit#heading=h.vmd4oqc75vtt
https://docs.google.com/document/d/1DrSwVOdgdmnZ_5DvWhGoaRkyhHdtWwC6bqZyxq8SCxY/edit#heading=h.vmd4oqc75vtt
https://docs.google.com/document/d/1DrSwVOdgdmnZ_5DvWhGoaRkyhHdtWwC6bqZyxq8SCxY/edit#heading=h.vmd4oqc75vtt
https://owasp.org/Top10/A03_2021-Injection/
https://owasp.org/Top10/A03_2021-Injection/
https://docs.google.com/document/d/1DrSwVOdgdmnZ_5DvWhGoaRkyhHdtWwC6bqZyxq8SCxY/edit#heading=h.r2ytla6x361u
https://docs.google.com/document/d/1DrSwVOdgdmnZ_5DvWhGoaRkyhHdtWwC6bqZyxq8SCxY/edit#heading=h.r2ytla6x361u
https://docs.google.com/document/d/1DrSwVOdgdmnZ_5DvWhGoaRkyhHdtWwC6bqZyxq8SCxY/edit#heading=h.r2ytla6x361u


38

25

Assuming that design issues might occur, 

having an external expert test the system, and 

review how things work on a periodic basis, is 

always a good idea.

04 Insecure Design 

DevSecOps Product Teams 

Having accountable teams that can discuss 

and share ideas about design, and prioritise 

small experiments to test implementation 

ideas, tends to help to establish team 

practices and build working agreements. By 

incorporating ideas from eXtreme 

Programming Concepts and approaching the 

work as team-owned (versus individually 

owned),we have found that development by 

DevSecOps teams tends to encourage more 

discussion about the work being performed 

and an increased likelihood of making better 

choices. In addition, the nature of 

incremental work removes the challenge of 

?big think? requirements. Answering the 

question ?what will these small changes do 

to our system?s security???, is easier than 

asking the question ?will this entire system 

I?ve designed, and will build, going be 

secure??.

External Pen-Testing & Security 
Review 

Insecure Design is not about insecure software implementation, but about missing or ineffective 

design control. This category is new for OWASP and reflects issues with ill-considered systems 

architecture, missing consideration for appropriate security risks, or missing software controls. 

These practices help our team avoid insecure design.

Automated Security Testing
Once a design choice is made, ensuring that 

choice is maintained over time is best done 

by encoding it into a test. For example, we 

have tests to verify that particular ports are 

inaccessible, and to ensure that insecure 

requests (e.g. non-HTTPS requests) are 

rejected. We also encode choices in our 

automated deployment pipelines, ensuring 

Access to security professionals within your 

organization who are available to consult on 

architecture, design, and implementation 

choices, readily extends the effectiveness of the 

DevSecOps team.

Security Consulting as a Service 

Network and Credential Encryption 

that infrastructure and settings are deployed 

consistently through the explicit steps of a 

pipeline.

The practice of ?locking-down-by-default? or 

?deny-by-default? means that failsafe designs 

are part of the team's mindset. To some extent, 

leveraging Cloud Platforms also helps with this 

kind of design, because they tend to have 

easy-to-automate controls (API control of 

set-up and service). They also encourage 

?deny-by-default? network practices and have 

services that are built for purpose, which 

makes it easier to enable the segregation of 

services across system and network tiers.

https://docs.google.com/document/d/1DrSwVOdgdmnZ_5DvWhGoaRkyhHdtWwC6bqZyxq8SCxY/edit#heading=h.r2ytla6x361u
https://docs.google.com/document/d/1DrSwVOdgdmnZ_5DvWhGoaRkyhHdtWwC6bqZyxq8SCxY/edit#heading=h.r2ytla6x361u
https://docs.google.com/document/d/1DrSwVOdgdmnZ_5DvWhGoaRkyhHdtWwC6bqZyxq8SCxY/edit#heading=h.r2ytla6x361u
https://owasp.org/Top10/A04_2021-Insecure_Design/
https://owasp.org/Top10/A04_2021-Insecure_Design/
https://docs.google.com/document/d/1DrSwVOdgdmnZ_5DvWhGoaRkyhHdtWwC6bqZyxq8SCxY/edit#heading=h.n168ydb9yzuf
https://docs.google.com/document/d/1DrSwVOdgdmnZ_5DvWhGoaRkyhHdtWwC6bqZyxq8SCxY/edit#heading=h.n168ydb9yzuf
https://docs.google.com/document/d/1DrSwVOdgdmnZ_5DvWhGoaRkyhHdtWwC6bqZyxq8SCxY/edit#heading=h.n168ydb9yzuf
https://docs.google.com/document/d/1DrSwVOdgdmnZ_5DvWhGoaRkyhHdtWwC6bqZyxq8SCxY/edit#heading=h.uvowk82qfkru
https://docs.google.com/document/d/1DrSwVOdgdmnZ_5DvWhGoaRkyhHdtWwC6bqZyxq8SCxY/edit#heading=h.uvowk82qfkru


38

26

configurations, plain-text or hard-coded 

passwords, or even insecure connections, can 

all be detected and are alerted to the team, 

with critical issues causing builds to stop until 

the offending implementation is either 

corrected or accepted as a risk by the team.

05 Security Misconfiguration 

Rotate, Repave, Repair - 
Automation & APIs 

This practice makes the process of 

deployment and hardening repeatable. This 

requires us to use the automation aspects 

we discussed in Enabling The Three R?s - 

Automation. Our pipeline runs Automated 

Security Tests to validate that if a security 

configuration exists, it?s working. A subset of 

our tests - those most critical to validate that 

security behaviours are working in each 

environment - are explicitly shared across 

multiple environments to verify behaviour 

throughout the deployment lifecycle. This 

subset includes negative tests that, for 

example, ensure things designated as 

inaccessible, still are, or that protocols we 

want to reject, are being rejected.

Security Misconfiguration covers a wide-range of security setup mistakes. There are so many 

ways security misconfiguration can manifest that it is difficult to suggest that a handful of 

specific practices will help. A lot of things need to come together to prevent this type of attack. 

However, here are the top practices that helped us:

eXtreme Programming Concepts
The idea of simplicity in code specifically 

means our team works to avoid complexity 

or unnecessary functions that can leave 

?unattended? components in the system with 

out-of-date or incorrect security 

Automation of a CI/CD pipeline to ensure 

repeatable deployment allows us, for example, 

to encode into our container configuration 

firewall lockdown for outbound traffic thus 

ensuring it is never missed, which often 

happens in manual deployments.

Enabling The Three R's - Automation

Code Scanning & Analysis Tools

The use of these tools in our pipeline means 

our team can check for common 

configuration issues in libraries and set 

defaults for missed, or poor, configuration 

settings. Choices like default password 

https://docs.google.com/document/d/1DrSwVOdgdmnZ_5DvWhGoaRkyhHdtWwC6bqZyxq8SCxY/edit#heading=h.qrzpbabb7hu7
https://docs.google.com/document/d/1DrSwVOdgdmnZ_5DvWhGoaRkyhHdtWwC6bqZyxq8SCxY/edit#heading=h.qrzpbabb7hu7
https://docs.google.com/document/d/1DrSwVOdgdmnZ_5DvWhGoaRkyhHdtWwC6bqZyxq8SCxY/edit#heading=h.qrzpbabb7hu7
https://docs.google.com/document/d/1DrSwVOdgdmnZ_5DvWhGoaRkyhHdtWwC6bqZyxq8SCxY/edit#heading=h.qrzpbabb7hu7
https://docs.google.com/document/d/1DrSwVOdgdmnZ_5DvWhGoaRkyhHdtWwC6bqZyxq8SCxY/edit#heading=h.qrzpbabb7hu7
https://docs.google.com/document/d/1DrSwVOdgdmnZ_5DvWhGoaRkyhHdtWwC6bqZyxq8SCxY/edit#heading=h.qrzpbabb7hu7
https://docs.google.com/document/d/1DrSwVOdgdmnZ_5DvWhGoaRkyhHdtWwC6bqZyxq8SCxY/edit#heading=h.gooe3u33fmy7
https://docs.google.com/document/d/1DrSwVOdgdmnZ_5DvWhGoaRkyhHdtWwC6bqZyxq8SCxY/edit#heading=h.gooe3u33fmy7
https://docs.google.com/document/d/1DrSwVOdgdmnZ_5DvWhGoaRkyhHdtWwC6bqZyxq8SCxY/edit#heading=h.gooe3u33fmy7
https://owasp.org/Top10/A05_2021-Security_Misconfiguration/
https://owasp.org/Top10/A05_2021-Security_Misconfiguration/


38

27

06 Vulnerable and Outdated Components 

Rotate, Repave, Repair - 
Automation & APIs 

Vulnerable and Outdated components risks are system components that have not been 

upgraded, or that contain known software vulnerabilit ies. Defending against this vector means 

being aware of the components you?re using, knowing if they have vulnerabilit ies, and 

responding quickly to patch them. These are the practices we are following that help us to 

prevent this risk:

Ensuring we use the latest and most 

correctly configured platform when 

deploying the product is important. 

Specifically, automation allows for the rapid 

deployment of the entire system. This 

practice, along with Automated Security 

Testing (in fact, automated testing as a 

whole), means that the team can proceed 

with upgrades to the platform or a library 

with confidence knowing that a successful 

test run means no regression errors. 

Validating our entire product against the 

latest operating system, container, run-time, 

firmware, library, etc. with just a few clicks 

means that upgrading vulnerable 

components is low-risk and easy, using the 

automated CI/CD pipeline 

These platforms make it easy to automate the 

selection of containers and operating systems 

as part of the CI/CD pipeline. Without 

infrastructure that can be built and deployed 

via APIs, it becomes much harder to ensure the 

latest and least vulnerable versions of 

containers and operating systems are used.

Enabling The Three R's - Automation

Code Scanning & Analysis Tools

In this practice we discussed tools that sit in 

our pipeline and specifically check for 

third-party components and versions with 

known vulnerabilit ies. This routine drives us 

to make continuous migrations to new 

libraries whenever applicable security 

concerns are flagged within our 

dependencies.

https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/


38

28

07 Identif ication and Authentication Failures 

Automated Security Testing

Identification and Authentication failures are all attacks related to poor management of 

credentials and gaps in authentication. The following practices are instrumental in helping us to 

avoid these:

Verifying all of our session and token-based 

authentication (and associated 

authorization) through automated testing 

ensures that our chosen practices around 

credential management continue to be 

enforced as the product evolves.

As we have learned, being able to see the 

patterns in the data of behaviours indicative of 

a security gap means we can catch a 

brute-force attack, for example, before they?re 

successful. 

Observability & SEIM

Network and Credential Encryption 
Practices

The non-repudiation practices we 

implemented - credential management best 

practices - make it much harder for 

passwords to be passed to people who don?t 

need them within our customer?s 

organization. These tests also validate the 

Identity token and identity system 

dependencies we talk about in the section 

on Identity, OAuth2 and the Resource 

Server. The APIs we implemented (Enabling 

The Three R?s - APIs) enable clients to rotate 

credentials regularly and automatically, 

making credential compromising much 

harder. 

https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/
https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/
https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/


38

29

08 Software and Data Integrity Failures 

eXtreme Programming Concepts

This attack vector involves using code and infrastructure that does not check for integrity 

violations. Examples might include pulling code or data from content delivery networks without 

validating it, using libraries that contain malicious code, or updating containers, firmware, or 

platforms without validating the source. This vector is quite a specific type of attack, but thanks 

to tools like npm that can be easily triggered to pull in chains of dependency libraries, it is one 

that can definitely cause issues. These practices helped us avoid some of these problems:

Having developers pair and review code, and 

make decisions about implementation as a 

DevSecOps Product Team means the team 

has practices like the intentional selection of 

dependencies with more than one person 

involved in the discussion. Reviewing 

implementation decisions every sprint 

means it is less likely that someone grabs a 

questionable library without some level of 

discussion around the choice.

Thanks to the practice of leveraging the cloud 

and the latest container and operating system 

images from our cloud provider, we 

automatically benefit from the practices of the 

security teams at the cloud provider that make 

those pieces of software available. Cloud 

security is one of the top concerns of all the 

leading cloud providers, and critical to trust in 

their business. As a result, they will almost 

always be more focused on, and better at, 

reviewing the security of platforms they make 

available, than most of our customers or their 

development teams. This practice is one more 

level of assurance provided by cloud platforms 

and services.

Enabling The Three R's - Cloud 
Platforms

Code Scanning & Analysis Tools

Perhaps the most important of these 

practices, we use tools in our pipeline that 

scan all library dependencies for known 

security alerts and vulnerabilit ies, including 

known malicious code and insecure libraries. 

Alerting the team immediately, and ensuring 

we review these alerts on a sprint-by-sprint 

(weekly) basis as part of sprint review meant 

the DevSecOps Product Team is constantly 

making informed decisions about possible 

problems. Included in these scans are the 

code analysis tools that trigger when bad 

practices around data management and in 

the code are detected, and again these are 

included in the CI/CD pipeline to ensure 

every change to the product code base is 

scanned.

https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/
https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/
https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/
https://en.wikipedia.org/wiki/Npm_(software)


38

30

09 Security Logging and Monitoring Failures 

Observability & SEIM

Security Logging and Monitoring failures are about gaps in logging and monitoring that occur 

within a system, resulting in being unable to detect, escalate, and respond to security breaches. 

This vector is mitigated very well with these two specific practices:

This practice means that we constantly 

improve our logging and ability to observe 

the platform. The DevSecOps Product Teams 

building the product have to support it, so 

everyone on the team wants to be able to 

see what is going on. Monitoring practices 

ensure we always have a mix of good and 

failed (e.g. unauthenticated) transactions 

hitting the system to verify activity, even 

when the platform is quiet. Thanks to all 

these practices, our team has over 40 billion 

security and logging-related events at our 

fingertips (over a year) to look into breaches, 

find them, track them, and action them. For 

example, in one instance one particular API 

that had not been well considered and was 

actively exposed through the gateway, 

resulting in some data was being made 

available, inappropriately, to users of the 

API. Thanks to our gateway and its level of 

observability, we were able to immediately 

audit who had accessed the service, if they 

had called the particular operation on the 

API that was exposing the sensitive 

information, and which accounts had been 

accessed. This visibility meant that the 

corporate security team could follow up with 

partners and affected customers quickly and 

effectively. Instead of having to publicly 

inform all customers that they might be at 

risk as a precaution, they were able to 

The practice of automated testing helps us 

ensure we?re not failing to log some detail. We 

have tests that run on every build that verify, 

based on a transaction, that the log entry is 

being recorded and contains the important 

details relating to security. These tests prevent 

accidentally failing to capture critical 

information for a security event, and to ensure 

we are not searching through logs during a 

possible security breach and wondering where 

our critical audit information has gone!

Automated Security Testing

inform only the small group of customers 

that were actually exposed.

https://owasp.org/Top10/A09_2021-Security_Logging_and_Monitoring_Failures/
https://owasp.org/Top10/A09_2021-Security_Logging_and_Monitoring_Failures/
https://owasp.org/Top10/A09_2021-Security_Logging_and_Monitoring_Failures/
https://owasp.org/Top10/A09_2021-Security_Logging_and_Monitoring_Failures/
https://owasp.org/Top10/A09_2021-Security_Logging_and_Monitoring_Failures/


38

31

10 Server-Side Request 

Automated Security Testing

The Server-Side request attack is perhaps the most specific of the top ten vectors. It involves a 

piece of software fetching a remote resource without validating its destination first. As a result, 

an attacker can cause an application to request information or services from an unexpected 

destination, despite other controls (like firewalls) that might try to prevent it. As a specific type of 

attack, it is hard to identify general practices to prevent it, however, the following help us most:

Our best friend, automated testing, helps to 

check that specific functionality to validate 

user-provided URLs (whether via API calls or 

user interfaces) are checked and validated 

correctly. For example, making sure that only 

HTTPS URLs are accepted is important.

programming builds this approach into your 
software development. 

Enabling The Three R's - Automation

Network and Credential Encryption 
Practices

The practice of deny-by-default comes in 

here. Leveraging Cloud Platforms also helps 

us here, because the deny-by-default state 

of networks and load balancers in our 

infrastructure are supported and reinforced 

by cloud services. Cloud platforms also 

usually provide tools that help to scan your 

set-up and raise alerts when new routes or 

access points get exposed. Making sure that 

our CI/CD pipeline (discussed in Automation 

& APIs) does infrastructure set-up helps to 

ensure a consistent set up all the time and 

that deny-by-default configs are 

continuously deployed.

Pair programming helps developers to spot 
possible mistakes, like failing to check or 
validating user-provided URLs, for example. 
Two heads are better than one, and pair 



38

32

SECTION 3: 
GETTING STARTED

Which  Practices are Most Valuable? 

How Do I Get Started with These Practices?

Who Can Help My Organization with This?



38

33

And Finally, Getting Started... 

Rotate, Repave, Repair - 
Automation & APIs 

The Agile Product Team, using a DevSecOps 

mindset, is the foundation of agility as well 

as the best place for security ownership: 

with the developers of the product, at the 

time of software creation. Working with a 

DevSecOps mindset requires an 

organization, as well as each individual team, 

to develop practices, technical (and soft) 

skills, and organizational support and 

mechanisms to enable the team to work 

effectively. Without improvements in all 

three of these areas, it is hard to get the full 

benefits of such a team, but many 

organizations around the world are tackling 

these challenges now to get the benefits of 

development agility and security.

In this ebook we have looked at 15 practices to shield your APIs from attack, and shown how 

many of these practices directly protect us from the top three of the OWASP Top 10 attack 

vectors. 

These practices are applicable to securing all kinds of software development and not just 

thwarting API attacks, but given the breadth of the problem, you might be wondering how to get 

started. This section will help you prioritize and begin applying these practices, especially if you 

have teams already building software.

Which Practices are Most Valuable? 
Of the practices we have covered, three stand out as starting points as they are fundamental to 

progressing to more secure software over the long term. These also appear most frequently 

when looking at the different attack vectors in the OWASP Top-10.

Automated Security Testing

Automated testing for any product that will 

be in market or service for more than a few 

months is fundamental, if the goal is 

business and software agility. They are 

especially reassuring during technology 

migrations and infrastructure upgrades to 

confirm equivalent function in the new code. 

Focusing some of these tests around 

security is most critical. Building software 

that can be tested, and building the 

automated programmatic tests to go with it 

is a goal that can be achieved over time. 

Software without good test coverage is just 

technical debt, or a legacy platform, waiting 

to cause trouble. The skills to reduce this risk 

are available and are worth the investment if 

security, quality, and reliability are concerns 

for your business.

https://owasp.org/Top10/
https://owasp.org/Top10/
https://owasp.org/Top10/
https://owasp.org/Top10/
https://owasp.org/Top10/


38

34

Observability & SIEM

Visibility into a software system is key to 

spotting security-related and unusual 

behaviour. It is also valuable with respect to 

tracing impacts of security events. Knowing 

exactly what transactions are occurring on a 

system, and how these transactions are 

flowing is a great start to observability, but 

pulling events into a place where they can all 

be analyzed and correlated is even more 

valuable. These practices don?t just help with 

security, and their value is incalculable with 

respect to being able to improve a system, 

reduce time to resolve customer issues, and 

measure operational performance against 

SLAs.

There are many ways to get started. Your organization?s experience, and your team?s experience, 

will influence your direction, but, assuming you?ve not tried these practices before, below are 

some key ideas to get started with each practice. See the next section for where you can go for 

more advice and help.

How do I get started with these Practices?

DevSecOps Product Teams
- Build an agile team - it?s never too 

early to get started.

- Your agile team for one product needs 

to be no more than 10 people, who 

are fully dedicated to developing the 

product all the time. They will need a 

Product Owner too.

- Hiring good Agile Product Owners 

who understand software 

development is tough, but they can 

make all the difference.

- Bring in an agile coach to help the 

team, and your organization, with the 

change. Change is hard and coaches 

are experts at facilitating change.

- Some people start by modeling their 

existing work via Kanban boards, and 

adapting from there.

- Start small, and remember that it 

takes time and effort to work 

differently.

- Automate, automate, automate - 

CI/CD pipelines are a key practice in 

getting to DevSecOps, and these 

pipelines and deployment tools must 



38

35

ultimately be owned by the product 

team, and not by a separate group. 

- There are lots of books on agility and 

adopting these practices, and many 

are worth reading. Here?s a guide to 

some of them, with The Phoenix 

Project being at the top of that, and 

my, list. 

Observability and SIEM
- Encourage your product development 

team to include explicit logging for 

audit events, and include items like 

timings. In a micro services 

architecture, correlating these audit 

events can be made easier by services 

passing around trace or request IDs.

- Check out our eBook on the things to 

log for best security observability.

- Bring your logs into an Observability 

platform like Splunk Enterprise or 

Splunk Observability. These tools 

make it much easier to identify 

operational patterns, not to mention 

make short work of creating 

dashboards.

- Investigate building reports and 

triggers around your observability 

data in these tools.

- Start small, and look for obvious 

issues to report to your SOC (Security 

Operations Center).

- Take a long view: growing to more 

mature SIEM tools (like Splunk 

Enterprise Security) takes time and 

skills. See the next section for where 

to go for help.

Automated Security Testing
- Adopt a tool or framework like 

Cucumber or Serenity BDD and just 

build a few tests across key areas of 

your product.

- Authentication steps are good.

- Testing is a mindset, and your product 

team needs to adopt the idea that their 

job is to break things that they have 

created.

- Developers of your product must be 

the key people building and 

maintaining tests, even though many 

developers have not taken ownership 

of tests before.

- Bring in an Automated Test Engineer to 

augment the team if the developers on 

the team are new to these ideas.

- Incorporate your automated tests into 

your CI/CD pipeline, and run them 

every time you want to validate a build 

candidate to be pushed beyond the 

development environment. And when 

they fail, do not proceed with the push 

until they pass. 



38

36

In addition to these work practices, there are plenty of tools and information available. OWASP is 

a great organization to look at for help, with their Top 10 reports, and their SAMM assessment 

(Software Assurance Maturity Model). If you?re concerned with API security specifically, OWASP is 

coming out with a refresh this year of their API-specific Top 10 attack vectors, and you can look 

out for a post from us talking about how these practices apply to those specific vectors in the 

future.

Even running these types of assessments, however, can be difficult, and adopting the above 

practices often takes experience and advice to be effective.

Bringing in expertise, and coaching can help tremendously with improving your security and in 

adopting these practices. Consulting support can also help you determine what is best for your 

organization, depending on where you are now. You might benefit from an audit or review of 

your current API security practices, compared to where you want or need to be, which can help 

focus your efforts and provide a road map for next steps. Taking into account your specific 

situation and current security exposure combined with looking at your specific business needs 

for scaling, security, business agility, and the features you may need to safely expose your 

specific API assets, can all help in making strategic decisions about the next steps your 

organization needs to take.

At Solsys, we help clients with these very kinds of decisions. We have workshop services available 

to help you assess your current API security posture and software development approaches, and 

provide some details on what might come next for you and your team. We can focus on your 

specific API security practices and identify gaps you might want to close. We have also have a 

number of patterns across these practices that we have instrumented in our Center of 

Excellence and Innovation Lab that is super helpful in diving deeper into design options.

Who can help my organization with this?



38

37

About the Author

John has worked with Solsys Corporation since 2013 as a Technical Product 

Owner & Systems Architect supporting the Digital Identity, Observability and API 

practices. In addition to working with customers on strategic initiatives in the 

information systems field, John has been engaged to support CISO in their API 

security standards work.

 John has worked with most of the Canadian Telecom companies, and also in the 

finance sector, in a variety of consulting roles, before coming to Solsys where he 

has worked with customer strategic initiatives as a Technical Product Owner.

Observability Microservices

Cloud Native

Cybersecurity Digital Identity

Business 
Outcomes

John Tobin

https://solsys.ca/observability/
https://solsys.ca/custom-enterprise-api-development-and-api-integration-services/
https://solsys.ca/north-american-telecom-leader-saves-3-million-annually-by-migrating-to-next-generation-api-connectivity/
https://solsys.ca/north-american-telecom-leader-saves-3-million-annually-by-migrating-to-next-generation-api-connectivity/
https://solsys.ca/splunk-as-a-product-enabler-for-security/
https://solsys.ca/digital_identity/
https://solsys.ca/digital_identity/
https://solsys.ca/agile-delivery-coaching-training/
https://solsys.ca/agile-delivery-coaching-training/


38

38

Cont act  us to secure your APIs today

LEARN HOW TO GET STARTED WITH 

SOLSYS 

Body text

hello@solsys.ca

solsys.ca

Solsys LinkedIn

mailto:hello@solsys.ca
https://solsys.ca/
https://www.linkedin.com/company/solsys-corporation/
https://www.linkedin.com/company/solsys-corporation/

	API Security in the Enterprise
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38


